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Memory tracing
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Memory tracing, why potentially good?!?

e Intuition:

e Comprehensive capture of system behavior
e Captures transient memory contents (i.e., short lived data &

code)

- Obfuscated data & code / self modifying code
- Cypto keys & buffers
- Short lived data: networks buffers, URLs, config data, passwords...

e We'll show:

e (Can be used for analysing malware

e Automate some aspects of malware analysis

e Guide analysts quickly to interesting memory regions, for
further manual analysis
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Analysis



Memory timelines

e One way tostart an analysis is using sandbox report to get big
picture of malware behavior

File modifications
Processes started
Network activity
Registry

O O O O O

e Let'ssee if we canrecover information similar to existing
sandboxes from memory traces?!?



Memory timelines - How?
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Memory timelines - What?

e Generate list with system events
o e.g, 4000 events for 30sec trace
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e Similar to sandboxes, but once we identify an interesting event,

can look at respective snapshot to dig into details
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Virtual address space - Zoomed
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Whitelisting

772a0000-77374000 | kernel32.dll
Size: d4000 [212]
Entry Point: 772f10c5
Full name: C:\Windows
\system32\kernel32.dll
Start: 588

End: 920




Whitelisting

772a0000-77374000 | kernel32.dll
Size: d4000 [212]
Entry Point: 772f10c5
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Whitelisting
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Difficulties

e Import Address Table (IAT)

o contains pointers to other relocated modules

e Solution
o Check each module without IAT

o Check IAT of all modules at the end
m |AT-Entry either to whitelisted module or 0xXO0O000000

e “.orpc” sections contain self modifying code
o Temporal solution: configurable -> ignore / check



Memory timelines f Visualization

Whitelistin
Analysis " -



Pattern matching




Pattern matching
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Algorithm

1. Reduce page data to a locality sensitive hash (LSH)
a. Similar dataresults in a similar hash
b. Easily comparable with hamming distance
c. Avoid comparing each and every byte

2. Perform arange search
a. Build asearchtree
b. Find matching neighbors by comparing LSHs
c. Fastand efficient



Memory timelines f Visualization
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Detecting self modifying code (SMC)

e Self modifying code (SMC) used a lot by malware
O E.g., packing / unpacking
O Often contains interesting code

O Sometimes unpacked, then re-packed (transient code)

e Goal: Find SMC in memory trace to guide analyst to
SMC quickly



Detecting self modifying code (SMC)

Self modifying code




Finding SMC - How?

Self modifying code
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Finding SMC - How?

e Howto find code regions?

e Verysimple heuristic to compute code density turns out to be

sufficient

o Count characteristic instructions (CALL DWORD, PUSH DWORD, POP
DWORD, . ..) per page

o ldentify function prologue (PUSH EBP; MOV EBP, ESP) and function
epilogues (POP EBP; RET)

e SMCisdetected if code density of a page increases from one
snapshot to next and if page is executable

Page code

Page code — densét‘)é: e
density = 20 page is

executable

Snapshot n-1 Snapshot n
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Crypto detection — Zeus
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Heap spray detection
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Demo



Zeroaccess

e P2Pbot

e What user sees upon infection:

“' User Account Control

Do you want to allow the following program to make
changes to this computer?

Program name:  Adobe Flash Player
Verified publisher: Adobe Systems Incorporated
File origin: Hard drive on this computer

V) Show details

Change when these notifications appear

e Usingthe analysis features shown so far, let’s try to understand what’s going on
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First analysis / hypothesis:

zeroaccess.exe,InstallFlashPl.exe,and services.exe are
malicious / corrupted
InstallFlashPl.exe elevated privilegestoinjectinto services.exe



Insights from video |
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Insights from video Il
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Insights from video |
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Insights from video IV
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Insights from video IV
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Memory trace acquisition



Architecture memory tracing engine
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WHEN to make snapshots: Triggering

e Basically everything that leaves guest execution (VMEXIT)

e System call trigger
o e.g.Snapshot after every NtWriteVirtualMemory

e Temporal trigger
o e.g.Snapshot every 20ms

e Manual trigger
o Single snapshotby echo 1 > /proc/kan/single on the host

e Guest trigger
o Instrument a guest binary with CPUID / VMCALL instructions

e Choice of triggers matters



“Generic” system call trigger

e Injects small agent into guest
o Only leaves guest execution for configured system calls
o Increases speed at cost of forensic neutrality

e Hooks

o 32bit: SYSENTER
m MSR_TIA32 SYSENTER_EIP =>settoagents address

o 32bit: SYSEXIT
m  MSR_IA32 SYSENTER_CS =>settoO =>trap #GP

o 64bit: SYSCALL
m MSR_LSTAR =>settoagents address

o 64bit: SYSRET

m RCX=>settononcanonical address => trap #GP

e Forcesa VMEXIT with VMCALL, CPUID or #GP

e Configurable
o For each system call: Before and / or after system call

e Works on Linux & Windows: 32bit and 64bit



HOW to make snapshots?

e When trigger a fires, memory needs to be dumped to disk. How?
o Including meta data such as registers and timestamp

e Enumerate entire memory (guest physical memory)
o Extended paging tables (EPT)

o Dirty page tracking

e Write memory changes asynchronously
o Copyin memory, async writing to disk
o Increases write throughput up to factor 10x

e Limitations
o Max.512 MB guest memory
o Max.onevirtual CPU

o Max.one VM running

e Requirements
o Host CPU featuring EPT

o Transparent huge pages (THP) disabled
m echo never >/sys/kernel/mm/transparent_hugepage/enabled



Memory tracing engine

e Performance
- depends on triggering frequency
- but system under acquisition can be used interactively
- ~ < 30ms per snapshot on moderate hardware

e Operating system independent
- Whatever runs under KVM is fine

- In particular, Linux, Windows
- 16bit/ 32bit / 64bit

e “Relatively” stealthy

- Minimal guest instrumentation (just the syscall trigger)
- As stealthy as KVM



Outlook & Conclusion



Conclusions & outlook

e Memory traces can be useful
o Caneasily/quickly understand infection behavior
o Guide analyst to interesting code regions for further manual analysis

e Forensic soundness in dynamic analysis

o Canrevisit memory trace any time, and examine the system state at capture
time
o Kind of hybrid between dynamic & static analysis

e Have seen rather simple analysis, can be done more:

o “Completely” understand contents of memory traces and the significance
of modifications
o Correlate different memory traces

e Any questions, ideas... please get in touch here @recon or email
btel@bfh.ch
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Thank you for your attention!



