Memory Tracing
Forensic Reverse Engineering

Recon 2014 Montreal
Endre Bangerter & Dominic Fischer

Security Engineering Lab | http://sel.bfh.ch | Bern University of Applied Sciences

Memory tracing

“Traditional” memory forensics

Execution
—_—)
On disk In memory
- Memory tracing
Execution .
3 [) Memory trace = series of

memory snapshots

On disk

Memory tracing, why potentially good?!?

e Intuition:

e Comprehensive capture of system behavior
e Captures transient memory contents (i.e., short lived data &

code)

- Obfuscated data & code / self modifying code
- Cypto keys & buffers
- Short lived data: networks buffers, URLs, config data, passwords...

e We'll show:

e (Can be used for analysing malware

e Automate some aspects of malware analysis

e Guide analysts quickly to interesting memory regions, for
further manual analysis

The system perspective

Malware

/ Memory \

sampling

o

Memory
acquisition

- 2

Memory trace
&
meta data

)

o

S

o

Analysis

Analysis

Memory timelines

e One way tostart an analysis is using sandbox report to get big
picture of malware behavior

File modifications
Processes started
Network activity
Registry

O O O O O

e Let'ssee if we canrecover information similar to existing
sandboxes from memory traces?!?

Memory timelines - How?

diff

Volatility 1 Volatility
* Processes .
« DLLs .
Network .
* Drivers .

1 Volatility 1
Processes * Processes
DLLs « DLLs
Network Network
Drivers e Drivers

diff
> « T .

]

process A creation

DLL B unload

'

process C termination

Driver D load

Memory timelines - What?

e Generate list with system events
o e.g, 4000 events for 30sec trace

12/20/13
12/20/13
12/20/13
12/20/13
12/20/13
12/20/13
12/20/13
12/20/13
12/20/13
12/20/13
12/20/13

1v/anian

14:47:59 snap_020.bir handles
14:47:59 snap_020.bir printkey
14:47:59 snap_020.bir filescan
14:47:59 snap_020.bir filescan
14:47:59 snap_020.bir filescan
14:47:59 snap_020.bir filescan
14:47:59 snap_020.bir filescan
14:47:59 snap_020.bir thrdscan
14:47:59 snap_019S.bir handles
14:47:59 snap_019.bir handles
14:47:59 snap_019.bir handles

TAANECN sdana NMA LIl khawdlaas

LI . L R B B O B

Handles
Registry
File

File

File

File

File
Thread
Handles
Handles
Handles

Hlawdlaa

zeroaccess_d4a
Run
InstallFlashPlayer.exe
msimg32.dll
Endpoint

@
GoogleUpdate.exe
zeroaccess_dda
explorer.exe
zeroaccess_d4a
zeroaccess_d4da

.......... dAa

Key

G
l_w_!
l_w__l

l_w_l
ATV
PID 2064
Thread
File

File

rlla

e Similar to sandboxes, but once we identify an interesting event,

can look at respective snapshot to dig into details

Memory timelines

.

Analysis

Virtual address space

-
Time (Snapshots)

Executable memory

5

._\.
\

Virtual address

"'}Head-only memory

Main module —— g

Modules (DLLs,..) —»

Virtual address space

-
Time (Snapshots)

Executable memory

5

l — E}Head-only memory

Virtual address

Main module —

Modules (DLLs,..) —»

Virtual address space - Zoomed

Memory timelines f Visualization

Analysis

Whitelisting

772a0000-77374000 | kernel32.dll
Size: d4000 [212]
Entry Point: 772f10c5
Full name: C:\Windows
\system32\kernel32.dll
Start: 588

End: 920

Whitelisting

772a0000-77374000 | kernel32.dll
Size: d4000 [212]
Entry Point: 772f10c5
Full name: C:\Windows
\system32\kernel32.dll
Start: 588

End: 920

Whitelisting

Whitelisting

Whitelist Snapshot N

Known good
module

Relocate G

Loaded module

Compare 6

/

Snapshot N+1

Loaded module

«— Virtual address

space

Difficulties

e Import Address Table (IAT)

o contains pointers to other relocated modules

e Solution
o Check each module without IAT

o Check IAT of all modules at the end
m |AT-Entry either to whitelisted module or 0xXO0O000000

e “.orpc” sections contain self modifying code
o Temporal solution: configurable -> ignore / check

Memory timelines f Visualization

Whitelistin
Analysis " -

Pattern matching

Pattern matching

Process A Process B

Same?

Same

Same?

/|

Algorithm

1. Reduce page data to a locality sensitive hash (LSH)
a. Similar dataresults in a similar hash
b. Easily comparable with hamming distance
c. Avoid comparing each and every byte

2. Perform arange search
a. Build asearchtree
b. Find matching neighbors by comparing LSHs
c. Fastand efficient

Memory timelines f Visualization

Whitelistin
Analysis " -

Pattern Matching

Detecting self modifying code (SMC)

e Self modifying code (SMC) used a lot by malware
O E.g., packing / unpacking
O Often contains interesting code

O Sometimes unpacked, then re-packed (transient code)

e Goal: Find SMC in memory trace to guide analyst to
SMC quickly

Detecting self modifying code (SMC)

Self modifying code

Finding SMC - How?

Self modifying code

Virtual
addr. space

Time / snapshots

Finding SMC - How?

e Howto find code regions?

e Verysimple heuristic to compute code density turns out to be

sufficient

o Count characteristic instructions (CALL DWORD, PUSH DWORD, POP
DWORD, . ..) per page

o ldentify function prologue (PUSH EBP; MOV EBP, ESP) and function
epilogues (POP EBP; RET)

e SMCisdetected if code density of a page increases from one
snapshot to next and if page is executable

Page code

Page code — densét‘)é: e
density = 20 page is

executable

Snapshot n-1 Snapshot n

Memory timelines f Visualization

Whitelistin
Analysis " -

Self modifying code /

Pattern Matching
(SMC)

Crypto detection — Zeus

explorer.exe

IX0365c040 T - ' ' '
GEIN W W W
® 0@ 00 @& °EMEED ° GO
x03567e00 | |
. O 5 . 8 ‘
x03473bcO} |
)x0337f980 | |
3 o - o
x0328b740 | o - - o 1
x03197500 | |
) - o o o @
o ¢
x030a32c0 | |
o
0x02faf08_0500 0 500 1000 1500 2000

Ongoing work with @cryptopath / Pascal Junod

2500

Heap spray detection

Aa 0
PAGE_READWRIT

base alloc: 046e0000

-

Demo

Zeroaccess

e P2Pbot

e What user sees upon infection:

“' User Account Control

Do you want to allow the following program to make
changes to this computer?

Program name: Adobe Flash Player
Verified publisher: Adobe Systems Incorporated
File origin: Hard drive on this computer

V) Show details

Change when these notifications appear

e Usingthe analysis features shown so far, let’s try to understand what’s going on

Zeroacces

s - Visualized timeline

AN

178, 560, 2079 InstallFlashPlayer.exe GoogleUpdate.exe msimg32.dll

explorer.exe

<

zeroaccess_d4a

2868

InstallFlashPl1

539

Written filds
4

/

First analysis / hypothesis:

zeroaccess.exe,InstallFlashPl.exe,and services.exe are
malicious / corrupted
InstallFlashPl.exe elevated privilegestoinjectinto services.exe

Insights from video |

ZeroAccess.exe InstallFlash.exe

Main image

Insights from video Il

ZeroAccess.exe InstallFlash.exe

Main image g msimg32.dll

Transient hook

Privilege escalation

Insights from video |

ZeroAccess.exe InstallFlash.exe

Main image g msimg32.dll

Transient hook

Privilege escalation

SMC in eXe region

Visually detected
XOR unpacking

SMCindata
regions - why?

Insights from video IV

ZeroAccess.exe

InstallFlash.exe

Main image

g msimg32.dll
Transient hook
Privilege escalation

SMC in eXe region

Visually detected
XOR unpacking

SMCindata
regions - why?

Services.exe

Unknown
coderegion

Insights from video IV

ZeroAccess.exe

InstallFlash.exe

Main image

SMC region

Explorer.exe

Unknown
coderegion

Hook ShellNotify

g msimg32.dll
Transient hook
Privilege escalation

SMC in eXe region

Visually detected
XOR unpacking

SMCindata
regions - why?

Services.exe

Unknown
coderegion

Memory trace acquisition

Architecture memory tracing engine

HOOKS

LINUX

KVM\ ERNEL

WHEN to make snapshots: Triggering

e Basically everything that leaves guest execution (VMEXIT)

e System call trigger
o e.g.Snapshot after every NtWriteVirtualMemory

e Temporal trigger
o e.g.Snapshot every 20ms

e Manual trigger
o Single snapshotby echo 1 > /proc/kan/single on the host

e Guest trigger
o Instrument a guest binary with CPUID / VMCALL instructions

e Choice of triggers matters

“Generic” system call trigger

e Injects small agent into guest
o Only leaves guest execution for configured system calls
o Increases speed at cost of forensic neutrality

e Hooks

o 32bit: SYSENTER
m MSR_TIA32 SYSENTER_EIP =>settoagents address

o 32bit: SYSEXIT
m MSR_IA32 SYSENTER_CS =>settoO =>trap #GP

o 64bit: SYSCALL
m MSR_LSTAR =>settoagents address

o 64bit: SYSRET

m RCX=>settononcanonical address => trap #GP

e Forcesa VMEXIT with VMCALL, CPUID or #GP

e Configurable
o For each system call: Before and / or after system call

e Works on Linux & Windows: 32bit and 64bit

HOW to make snapshots?

e When trigger a fires, memory needs to be dumped to disk. How?
o Including meta data such as registers and timestamp

e Enumerate entire memory (guest physical memory)
o Extended paging tables (EPT)

o Dirty page tracking

e Write memory changes asynchronously
o Copyin memory, async writing to disk
o Increases write throughput up to factor 10x

e Limitations
o Max.512 MB guest memory
o Max.onevirtual CPU

o Max.one VM running

e Requirements
o Host CPU featuring EPT

o Transparent huge pages (THP) disabled
m echo never >/sys/kernel/mm/transparent_hugepage/enabled

Memory tracing engine

e Performance
- depends on triggering frequency
- but system under acquisition can be used interactively
- ~ < 30ms per snapshot on moderate hardware

e Operating system independent
- Whatever runs under KVM is fine

- In particular, Linux, Windows
- 16bit/ 32bit / 64bit

e “Relatively” stealthy

- Minimal guest instrumentation (just the syscall trigger)
- As stealthy as KVM

Outlook & Conclusion

Conclusions & outlook

e Memory traces can be useful
o Caneasily/quickly understand infection behavior
o Guide analyst to interesting code regions for further manual analysis

e Forensic soundness in dynamic analysis

o Canrevisit memory trace any time, and examine the system state at capture
time
o Kind of hybrid between dynamic & static analysis

e Have seen rather simple analysis, can be done more:

o “Completely” understand contents of memory traces and the significance
of modifications
o Correlate different memory traces

e Any questions, ideas... please get in touch here @recon or email
btel@bfh.ch

mailto:bte1@bfh.ch
mailto:bte1@bfh.ch

Thank you for your attention!

