Memory Tracing Forensic Reverse Engineering

Recon 2014 Montreal Endre Bangerter & Dominic Fischer

Memory tracing

"Traditional" memory forensics

Memory tracing

• **Memory trace** = series of memory snapshots

Memory tracing, why potentially good?!?

• Intuition:

- Comprehensive capture of system behavior
- Captures transient memory contents (i.e., short lived data & code)
 - Obfuscated data & code / self modifying code
 - Cypto keys & buffers
 - Short lived data: networks buffers, URLs, config data, passwords...

We'll show:

- Can be used for analysing malware
- Automate some aspects of malware analysis
- Guide analysts quickly to interesting memory regions, for further manual analysis

The system perspective

Memory timelines

Analysis

Memory timelines

- One way to start an analysis is using sandbox report to get big picture of malware behavior
 - File modifications
 - Processes started
 - Network activity
 - Registry
 - 0
- Let's see if we can recover information similar to existing sandboxes from memory traces?!?

Memory timelines - How?

1.

2.

Memory timelines - What?

- Generate list with system events
 - o e.g, 4000 events for 30sec trace

12/20/13	14:47:59 snap_020.bir handles	+	Handles	zeroaccess_d4a	Key
12/20/13	14:47:59 snap_020.bir printkey	+	Registry	Run	G
12/20/13	14:47:59 snap_020.bir filescan	+	File	InstallFlashPlayer.exe	'-W'
12/20/13	14:47:59 snap_020.bir filescan	+	File	msimg32.dll	'-W'
12/20/13	14:47:59 snap_020.bir filescan	+	File	Endpoint	''
12/20/13	14:47:59 snap_020.bir filescan	+	File	@	'-W'
12/20/13	14:47:59 snap_020.bir filescan	+	File	GoogleUpdate.exe	'-W'
12/20/13 12/20/13	14:47:59 snap_020.bir filescan 14:47:59 snap_020.bir thrdscan	+	File Thread	GoogleUpdate.exe zeroaccess_d4a	'-W' PID 2064
12/20/13	14:47:59 snap_020.bir thrdscan	+	Thread	zeroaccess_d4a	PID 2064
12/20/13 12/20/13	14:47:59 snap_020.bir thrdscan 14:47:59 snap_019.bir handles	+	Thread Handles	zeroaccess_d4a explorer.exe	PID 2064 Thread

 Similar to sandboxes, but once we identify an interesting event, can look at respective snapshot to dig into details

Virtual address space

Virtual address space

Virtual address space - Zoomed

Whitelisting

772a0000-77374000 | kernel32.dll Size: d4000 [212] Entry Point: 772f10c5 Full name: C:\Windows \system32\kernel32.dll Start: 588 End: 920

Whitelisting

Whitelisting

Difficulties

- Import Address Table (IAT)
 - contains pointers to other relocated modules
- Solution
 - Check each module without IAT
 - Check IAT of all modules at the end
 - IAT-Entry either to whitelisted module or 0x00000000

- ".orpc" sections contain self modifying code
 - Temporal solution: configurable -> ignore / check

Pattern matching

Pattern matching

Algorithm

1. Reduce page data to a locality sensitive hash (LSH)

- a. Similar data results in a similar hash
- b. Easily comparable with hamming distance
- c. Avoid comparing each and every byte

2. Perform a range search

- a. Build a search tree
- b. Find matching neighbors by comparing LSHs
- c. Fast and efficient

Detecting self modifying code (SMC)

- Self modifying code (SMC) used a lot by malware
 - E.g., packing / unpacking
 - Often contains interesting code
 - Sometimes unpacked, then re-packed (transient code)

 Goal: Find SMC in memory trace to guide analyst to SMC quickly

Detecting self modifying code (SMC)

Finding SMC - How?

Time / snapshots

Finding SMC - How?

- How to find code regions?
- Very simple heuristic to compute code density turns out to be sufficient
 - Count characteristic instructions (CALL DWORD, PUSH DWORD, POPDWORD,...) per page
 - Identify function prologue (PUSH EBP; MOV EBP, ESP) and function epilogues (POP EBP; RET)
- SMC is detected if code density of a page increases from one snapshot to next and if page is executable

Crypto detection – Zeus

Ongoing work with @cryptopath / Pascal Junod

Heap spray detection

Demo

Zeroaccess

- P2P bot
- What user sees upon infection:

Using the analysis features shown so far, let's try to understand what's going on

Zeroaccess - Visualized timeline

First analysis / hypothesis:

- zeroaccess.exe, InstallFlashPl.exe, and services.exe are malicious / corrupted
- InstallFlashPl.exe elevated privileges to inject into services.exe

Insights from video I

Insights from video II

Insights from video III

Insights from video IV

Insights from video IV

Memory trace acquisition

Architecture memory tracing engine

WHEN to make snapshots: Triggering

- Basically everything that leaves guest execution (VMEXIT)
- System call trigger
 - e.g. Snapshot after every NtWriteVirtualMemory
- Temporal trigger
 - e.g. Snapshot every 20ms
- Manual trigger
 - Single snapshot by echo 1 > /proc/kan/single on the host
- Guest trigger
 - Instrument a guest binary with CPUID / VMCALL instructions
- Choice of triggers matters

"Generic" system call trigger

- Injects small agent into guest
 - Only leaves guest execution for configured system calls
 - Increases speed at cost of forensic neutrality
- Hooks
 - 32bit: SYSENTER
 - MSR_IA32_SYSENTER_EIP => set to agents address
 - 32bit: SYSEXIT
 - MSR_IA32_SYSENTER_CS => set to 0 => trap #GP
 - o 64bit: SYSCALL
 - MSR_LSTAR => set to agents address
 - 64bit: SYSRET
 - RCX => set to non canonical address => trap #GP
- Forces a VMEXIT with VMCALL, CPUID or #GP
- Configurable
 - For each system call: Before and / or after system call
- Works on Linux & Windows: 32bit and 64bit

HOW to make snapshots?

- When trigger a fires, memory needs to be dumped to disk. How?
 - Including meta data such as registers and timestamp
- Enumerate entire memory (guest physical memory)
 - Extended paging tables (EPT)
 - Dirty page tracking
- Write memory changes asynchronously
 - Copy in memory, async writing to disk
 - Increases write throughput up to factor 10x
- Limitations
 - Max. 512 MB guest memory
 - Max. one virtual CPU
 - Max. one VM running
- Requirements
 - Host CPU featuring EPT
 - Transparent huge pages (THP) disabled
 - echo never >/sys/kernel/mm/transparent_hugepage/enabled

Memory tracing engine

Performance

- depends on triggering frequency
- but system under acquisition can be used interactively
- ~ < 30ms per snapshot on moderate hardware

Operating system independent

- Whatever runs under KVM is fine
- In particular, Linux, Windows
- 16bit / 32bit / 64bit

"Relatively" stealthy

- Minimal guest instrumentation (just the syscall trigger)
- As stealthy as KVM

Outlook & Conclusion

Conclusions & outlook

Memory traces can be useful

- Can easily / quickly understand infection behavior
- Guide analyst to interesting code regions for further manual analysis

Forensic soundness in dynamic analysis

- Can revisit memory trace any time, and examine the system state at capture time
- Kind of hybrid between dynamic & static analysis

Have seen rather simple analysis, can be done more:

- "Completely" understand contents of memory traces and the significance of modifications
- Correlate different memory traces
- Any questions, ideas... please get in touch here @recon or email <u>bte1@bfh.ch</u>

Thank you for your attention!